© 2004 Adam Barr. All Rights Reserved.

Brief Summary of Java

Java programs are compiled into an intermediate format, known as bytecode, and then run
through an interpreter that executes in a Java Virtual Machine (JVM).

The basic syntax of Javais similar to that of C and C++. All white space is treated equally,
indent level does not matter, statements end in a semi-colon, and blocks of code are enclosed
between{ and}.

Comments are enclosed between/ * and */ , or else begin with/ / , in which case the rest of
thelineis a comment.

Theinteger datatypesarebyt e, short, i nt, and| ong, which correspond to nhumbers of 8,
16, 32, and 64 bits. Thetypesf | oat and doubl e store floating-point numbers; char stores a 16-
bit Unicode character, and bool ean can hold one of two values, t r ue or f al se.

Variables are declared with a type and name, asin:

int nyint;

and can beinitidized at the sametime:

char delineter ="'/";
bool ean fini shed = fal se;

Variables can be declared anywhere they are used; the scope of a variable usually extendsto
the end of the code block it was declared in.

Java allows variables to be converted between different numeric types by casting, asin:

int a;
doubl e d = (double)a;

You can aso cast between objects, but we won't cover that.

Variables can be declared asf i nal , which means their value cannot be changed onceit is
initialized:

final int MAX_LEN = 128;

Arithmetic expressions in Java are straightforward, with %used for modulo:

© 2004 Adam Barr. All Rights Reserved.

k = a + b;
renmai nder = tot % users;

The++ and - - operators exist; if they are used in prefix notation, the expression is evaluated
after the operation is done; in postfix notation, the expression is evaluated before the operation is
done. So, with the following

-+
nmon

+
e

a2

e and f will both get set to 5.

Beyond the basic data types, everything in Javais stored in objects. An abject is a grouping
of variables and methods (functions that operate on those variables).

The variables and methods included in an object are defined in a class. Technically aclassis
adescription of an object and an instance is an actual object, but the word object is used to refer
to both.

Y ou can define your own classes; Java includes many pre-defined ones. One such classis
St ri ng, which is used to store a constant string. Strings in Java are not just arrays of characters;
they are a class that has defined methods for accessing and modifying the characters in the string.

Well usethe St ri ng class to show how Java objects are used. A St ri ng can be created
from an array of characters as follows:

char[] nyArray = { '"a', 'b'", 'c' };
String nyString = new String(nmyArray);

The expresson new St ri ng(nyAr r ay) invokeswhat is called a constructor for the class
St ri ng. Constructors create a new object, optionally taking parameters. How many parameters a
constructor takes, and what types those parameters are, is part of the class definition. Multiple
constructors can exist, as long as they take different parameter lists. For example, another
constructor for String is called as

String nyString = new String(nmyArray, 2, 1);

That is, specifying an offset and count within my Ar r ay, and you can also cal:

String nyString = new String();

© 2004 Adam Barr. All Rights Reserved.

which creates an empty string (A St ri ng cannot be changed one initialized, so it would stay
empty).

When Java sees a string in double quotes, it automatically convertsitto a St ri ng object, so
you can write:

String newString = "text";

which is actually an assignment of one St ri ng to another. This automatic creation of an
object from a constant is unique to the St r i ng class, but it sureis convenient.

Thereis aso a constructor for St ri ng that takes another St ri ng:

String newString = new String("text");

although this would temporarily create an extra object (since"t ext " automatically becomes
asString, thenisused to construct another one), so it is unnecessary. St r i ng actually has nine
constructors, plus two more that are obsolete. There are no destructors in Java; objects are
destroyed after the last reference to them is removed (often because the variables holding that
reference goes out of scope). A variable can be assigned a keyword nul | to force its reference to
be removed:

anotherString = null;

Java does not have explicit pointers; in a sense, al variables that refer to objects are pointers.
When you assign between two objects of the same type, you are actually assigning a reference to
the abject on the right-hand side; to create a new object, you need to construct a new one:

b; /'l reference
new nyQhj ect (b); /1 create a new obj ect

Classes define methods that can be called on an instance of that class. For example, the
St ri ng classhasamethod | engt h() which returns the length of the string:

String j = "abcl23";
X = j.length();

As mentioned earlier, a St ri ng cannot change once initiaized. Java has another class,
St ri ngBuf f er , which holds strings that can change. A St ri ngBuf f er can be constructed from
asString, or from alength, which specifies how many characters of capacity it should start with:

© 2004 Adam Barr. All Rights Reserved.

StringBuffer sbl
StringBuffer sb2

new StringBuf fer("howdy");
new St ri ngBuf fer (100);

St ri ngBuf f er hasavariety of methods on it:

sb. append("nore data");
char ¢ = sb.charAt(12);
sb.reverse();

In Java, the + operator can be used to concatenate strings together; a sequence such as

String greeting = "Hello";
greeting = greeting + " there";

islegal. Sincetheorigina Stri ng that gr eet i ng points to cannot be modified, the
concatenation actually involves the creation of anew St ri ng, which gr eet i ng isthen set to
point to, thus removing the reference to the original " Hel | 0" string, which will eventualy cause
it to be destroyed.

(The concatenation statement also involves some more behind-the-scenes magic by the
compiler; it creates atemporary St ri ngBuf f er , then callsthe St r i ngBuf f er . append()
method for each expression separated by a+ sign, then calls St ri ngBuf fer. t oStri ng() to
convert it back to theresult St ri ng. Aswith the automatic creation of St r i ng objects from
constant strings, thisis a special case on the part of Java, but is there because string concatenation
isso useful.)

St ringBuf fer. append() isoverloaded so it can be passed any primitive type, thus you
can call

int j = 4
String b = "Value is " + j;

and b will equal "Val ue is 4"; infact St ri ngBuff er. append() will work for any
object at all by appending the result of the object'st oSt ri ng() method, which can be
overridden as needed by the author of the object's class.

Java likely has a class for almost any standard operation you want to do; the documentation
lists constructors and methods. For example, there are classes that wrap all of the primitive types,
such as this one that wraps the short primitive in a class called Shor t (note the capital 'S on the
class name), and provides various useful methods:

Short s = new Short(12);
String str = s.toString();

© 2004 Adam Barr. All Rights Reserved.

I won't go into more detail about specific classes, except as needed in the examples. In order
to use a class, you have to import the package that definesiit; this will be specified in the
documentation of the class. For example, to use the String class, include the following in the
code:

i mport java.lang. String;
which can include a wildcard:

i mport java.l ang. *;

Arraysin Java are declared with square brackets:

int[] intArray;

The array then has to be created:

intArray = new int[10];
i nt Arr ay would then be indexed from 0 to 9.

Arrays can also be created at declaration time, if values are specified:

int[] array2 = { 5, 4, 3, 2, 1};

You can't explicitly specify the length in that case; it's determined from how many values are
provided.

You can get the number of eementsin an array:

k = array2.1ength;
Note that thisis not a method, so there are no parentheses after | engt h.

Arrays can also hold objects, so you can declare:

MyQbj ect[] objarray;

which would then be created as follows (this could be combined with the declaration):

objarray = new MyQbj ect[5];

It isimportant to note that this creates only the array. Y ou still need to create the 5 objects:

© 2004 Adam Barr. All Rights Reserved.

for (k = 0; k <5; k++) {
objarray[k] = new MyQbj ect ();

To create sub-arrays, create an array each of whose elementsis an array. The first array can
be declared and created in one step:

int[][] bigArray = newint[6][];

and then each of the sub-arrays would need to be created (they can each be different lengths,
in fact):

for (m=0; m< 6; m+) {
bi gArray[m = new int[20];

You can initidize arrays when they are declared:

short[][] shortArray = { { 1, 2, 3}, {4}, {5, 61} };

After that, short Array[0] would be an array of 3 dements, short Array[1] would bean
array of 1 dement, and short Array[2] would be an array of 2 eements.

Finaly, if the entriesin the arrays are objects, they have to be constructed as wdl, as in the
following:

final int XDIM = 6;

final int YDIM= 10;

SomeQoj [][] oa;

oa = new Somej [XDIM [];

for (int i =0; i < XDM i++) {
oa[i] = new Some(hj [YDIM;
for (int j =0;] <YDM j++) {

oal[i][j] = new Sone(bj ();

Java conditionals use the samei f / el se syntax as C:

it (J ==5) {
/1 do sonething

© 2004 Adam Barr. All Rights Reserved.

} else {
//do sonething el se
}

Theswi t ch statement is also the same, with explicit br eak statements required, and a
defaul t case:

switch (newChar) ({

case "@:
process_at();
br eak;

case "
process_dot ();
br eak;

defaul t:
i gnore();

Looping isdonewith f or , whi | e, and do/ whi | e:

while (k > 8) {
do_processing();
}

do {
eof = get_line();
} while (eof I'= true);

br eak breaks out of aloop, and cont i nue jumpsto the next iteration. A label can be added
to br eak or cont i nue to specify which loop it refersto:

out er| oop:
for (x = 0; x < 20; x++) {
for (y = x; y <20; y++) {
i f (something) {
break outerl oop;
}

Note that out er | oop: isalabd for the loop and the statement br eak out er | oop; breaks
out of the labeled loop. It does not jump to the point wherethe out er | oop: label existsin the
code.

© 2004 Adam Barr. All Rights Reserved.

Any Java program requires that the author define at least one class. A classis defined as
follows:

class Md ass {
private int a;
public StringBuffer b;
public Mydass(int j) {
a=j,;
b new StringBuffer(j);

}
public Mydass(String s) {

a = s.length();
b = new StringBuffer(s);
}
public int getLength() {
return a;
}

a and b are member variablesin the class. a is defined with an access specifier of pri vat e,
meaning that it is hidden from the view of external code; b ispubl i ¢, meaning anyone can
access it if they have an instance of Myd ass. For example:

new Myd ass("hell 0");
nc. b; /1 this is allowed, b is public
a /1 this is NOT allowed, a is private

String abc =
int def = nt.

Well get back to access specifiersin a second. For the moment, note that Myd ass has two
constructors, one of which takesani nt as a parameter, one of which takesa St ri ng (the second
oneisthe one we caled in the code sample above). Both constructors initialize a and b; variables
can aso beinitialized when they are declared, so b could have been declared as

public StringBuffer b = new StringBuffer();
although for this class that would not be necessary since every constructor initialzesiit.

Classes can aso inherit from another class. A subclass inherits al the state and behavior of
the its superclass (but not the constructors!), although it can override variables and methods by
providing new ones with the same name (unless those variables and methods were declared with
thefi nal keyword). If the superclassis declared abst r act , it cannot itself be instantiated and
exists to be a common ancestor to different subclasses. Inheritance is indicated by the ext ends

keyword:

abstract class Pol ygon {
Point[] points;
abstract int getcount();

© 2004 Adam Barr. All Rights Reserved.

}
class Triangl e extends Pol ygon {
public Triangle() {
points = new Point[3];
}

int getcount() { return 3 };

The access specifier of aclass variable can bepubl i c, pri vat e, pr ot ect ed, or package
(the default). publ i ¢ means any code can accessit; pri vat e means only methods in the class
itself can accessit, and package means any code in the same "package” (which is away to group
classes together) can accessiit.

A variable marked pr ot ect ed can be accessed by the class, subclasses, and al classes in the
same package. Actually, to be more precise, subclasses can only access a pr ot ect ed member
inherited from a superclass when the object is an instance of the subclass (which it usually will
be); they can't modify an instance of the superclassitsalf. If you didn't catch that, don't worry too
much about it.

Members of a class (variables or methods) can be declared with the keyword st at i ¢, which
makes them "class members," as opposed to "instance meambers' which is the case we have been
describing so far. Class variables and class methods exist just once, as opposed to once per
instance. For example, a class could assign unique identifiers to each instance it creates:

cl ass I nportant Object {
private static int nextcounter = O;
private int counter;
public Inportantoject() {
counter = nextcounter ++;
}

/'l continues...

Each instance of the class has its own count er member, but there is only one global
next count er .

Closdly related to classes are interfaces. An interface is like an abstract class, except it can't
implement any of its methods:

public interface identify {
String get Nane();
}

Other classes can now support an interface using thei npl enent s keyword. Unlike
inheritance, where a class can only inherit from one class, classes can implement as many
interfaces as they like, as long as they provide implementations of the methods:

© 2004 Adam Barr. All Rights Reserved.

cl ass SonmeC ass inplenments identify {
final String name = "Sonmed ass";
String getNane() { return nane };
/1 rest of class follows...

A class with only public member variables, and no methods, can be used to group variables
together by name, similar to C structures:

cl ass Record {
public String nane;
public int id;
public int privilege;

}

Record r = new Record();
r.name = "Joe";

r.id = 12;

r.privilege = 3;

Java supports exceptions. Exceptions are objects, which can be caught:

try {
i = ny_array[X];

} catch (Arrayl ndexQut O BoundsException e) ({
Systemerr.println("Exception " + e.getMessage());

} finally {
/1 cl eanup code
}

At ry can have multiple cat ch blocks, each catching a different exception (thereisa
hierarchy of exception classes, leading back to a class caled Thr owabl e; acat ch block that
catches a particular exception will aso catch any exceptions that are subclasses of that

exception).

If an exception happens and is caught, the cat ch block executes. Thef i nal | y block always
executes, whether an exception happens or not, and is usually used for cleanup code.

You can create and throw exceptions:

if (array.length == 0) {
t hrow new ||| egal Argunent Exception();
}

© 2004 Adam Barr. All Rights Reserved.

Java requires that functions that can throw an exception specify it in the declaration of the
function with t hr ows:

public void process_array(int[] array)

throws 111 egal Argunment Exception {
if (array.length == 0) {
t hrow new ||| egal Argunent Exception();

}

Functions must aso specify exceptions that may be thrown by functions they call, unless they
catch the exception. Thus, a function that called pr ocess_array() as defined above would
need to either put it in atry block with an associated catch block that caught
Il egal Argunent Except i on, or specify in its own declaration that it throws
Il egal Argunent Except i on (this"catch or specify" rule does not apply to a class of
exceptions known as runtime exceptions; thisis discussed in detail in the Java documentation).

The examples we use will be split between command-line applications and applets designed
to run in aweb browser. A command-line application has to contain a class that implements a
mai n() function, which must be defined as publ i ¢ st ati c, returntypevoi d, and receive the
command-lineas an array of St ri ngs:

public class M/Application {
public static void main(String[] args) {
for (int j =0; j < args.length; j++) {
Systemout.println(args[j]);
}

An applet inherits from a class called Appl et :

public class MyAppl et extends Applet ({
public void paint(Gaphics g) {
g.drawsString("Testing 123", 10, 10);
}

Thepai nt () method is overridden (from a superclass a few levelsup from Appl et) and is
used to display on the screen; the Gr aphi cs class has many of the methods used to draw lines
and shapes, display text, change color, etc.

