(c) 2004 Adam Barr. All Rights Reserved.

Brief Summary of C

Statementsin C end with a semi-colon (;). C treats al blanks space as equivalent, so line
breaks and indents are for readability only. Blocks of code are surrounded with braces, { and} . A
single statement without the braces also counts as a block of code.

The basic datatypesin C arei nt and char . Ani nt holds an integer value, which can be 2,
4 or 8 bytes depending on the platform (none of the code here depends on the exact length of an
i nt). A char holdsasingle byte. Single characters are surrounded by single quotes, such as' a'
and' x' . There are other data types for floating point numbers and integers of different sizes,
which | won't use.

Variable and function names are case-sensitive. Variables are declared with the type followed
by the name, for example:

int counter;

and multiple variables can be declared together, separated by a comma:

char letter, lastbyte, direction;

Arraysin C are denoted with square brackets and indexed from O, so

i nt scores[20];

alocatesroom for 20 i nt s, of which scor es[0] would bethefirst and scor es[19] the
last.

Assignment is done with the= sign:

counter = O;

Variables can be declared and initialized in one step:

i nt bytecount = O;

Arithmetic is as expected, with expressions grouped using parenthesis:

counter = counter + 1;
| astbyte = ((direction - 5) * 6) / 2;

(c) 2004 Adam Barr. All Rights Reserved.

The statement

++count er;

is shorthand for

counter = counter + 1;

Strings are simply arrays of type char. By convention, a string is terminated with a O value,
written as a single character ' \ 0' . Thus the length of a string may be less than the size of the
char array it is stored in. Declaring

char nane[10];

allocates room for a string that can be up to 9 bytes long, since one byte must be left for the
terminating ' \ 0' (you could put a different character in the tenth byte, but it would then not be a
properly-terminated string according to C conventions). The code

nane[0]
nane[1]
nane[2]
nane[3]

.

will set the nameto be"t ed", with the 6 extra bytes unused at that point. A string in double
guotes, such as " hel | 0", is converted by the compiler into a char array included thefina * \ 0* ,
so " hel | 0" occupies six bytes.

Pointers are declared with *, for example:

char * city;

which only allocates storage for the pointer itself. Pointer can be declared together with
variables of the type, so

char * city, nane;

declaresa pointer toachar caledcity, andachar (not apointer) caled nane. char
pointers are often assigned to constant strings, for example

city = "Boston";

(c) 2004 Adam Barr. All Rights Reserved.

which will automatically alocate the 7 bytes needed to store the string " Bost on" and set
city topointtoit.

The value NULL is assigned to pointers to indicate that they point to nothing.

Pointers are a so dereferenced with *, so*ci t y isthefirst byte pointedto by ci t y. In fact,
pointers and arrays are often used interchangeably, and thefirst char intheci t y array could be
referenced asci t y[0] or *ci t y. Notethat C does no checks for validity of pointers, so*ci ty
will likely cause acrashif ci t y isuninitiaized, and name[20] gives an undefined result if nane
is alocated as above with room for only 10 char s.

Pointer arithmetic is allowed and automatically compensates for the size of the eement
pointed to. Thus, ci t y+2 will point to two bytes after ci t y, Sinceachar occupies one byte, but
for ani nt array declared as

i nt distances[5];

and assuming ani nt occupies 4 bytes, di st ances+2 will be 8 bytes after distances. More
generdly, array[n] isequivdentto*(array + n) andinfact isdefined as such.

Structures are defined as follows:

typedef struct _record {
int el enentl;
char el enment 2;
struct _record * next;
} record, * record_ptr;

This combines two things (which could be separated if desired, but won't be in this book): the
definition of the structure _r ecor d, and the creation of a new typer ecor d which is equivalent
to the more cumbersomest ruct _record (it also definesa new typer ecor d_pt r, a pointer
to ar ecor d). Within the structure definition itself, st ruct _r ecor d is used because the
t ypedef isnot finished, but from then onr ecor d can be used instead.

Variables can then be declared such as:

record current _record,
record_ptr first_record;

For clarity, in this book programswill user ecord * asopposedtorecor d_pt r toindicate
apointertoarecord. record_ptr * meansapointer to apointertoarecord.

Elementsin a struct are referenced with . , asin:

(c) 2004 Adam Barr. All Rights Reserved.

current _record. el enent 1

For pointers - > is used to combine dereferencing a pointer to a structure and accessing an
entry in the structure, asin:

first_record->el enent 2;

which is equivalent to:

(*first_record). el ement 2;

or even:

first_record[O0]. el enent2;

Conditiona statements are defined as:

if (test-expression)
t rue- code- bl ock
el se
f al se- code- bl ock

with theel se and f al se- code- bl ock optional. The code blocks can a single statement, or
multiple statements surrounded by braces. Thei f () istrueif test-expression evaluates to a non-
zero value, false if it is zero. Comparisons are donewith ==, ! =, <, >, <=, and >=.

In C, an assignment statement is also an expression having the value of the left-hand of the
assignment, so the assignment statement

c =5

evaluatesto 5 and you could write:

The ++ operator, seen earlier, can be written before or after the variable; when written before
the value returned by the assignment is the new value, but when written after, the old valueis
returned:

j =5
kK = +4j; /Il k will be 6
m = Kk++; /Il mwll also be 6

(c) 2004 Adam Barr. All Rights Reserved.

Thereisaso a- - operator that works the same way for subtracting 1.

It isa common mistake in C to write

if (c =5)

(which will always evaluate to 5, thus always non-zero and always true) instead of

if (c == 5)

which evaluates as expected, trueif ¢ isequal to 5, false otherwise. Findly,

if (c)

isthe same as

if (c '= 0)

Loops can be done with af or statement:

for (init-statement ; test-expression ; increnent-statenent)
f or - code- bl ock

Typicdly i ni t - st at ement initializes aloop counter, t est - expr essi on iSan expression
involving the loop counter, andi ncr enent - st at ement modifies the loop counter (but that is
not always true):

int array[20];
for (i =0; i < 20; i++) {

{ code involving array[i]; }
}

This walks through the elements of array. Notethat t est - expr essi onisi < 20, noti
<= 20, since entriesin an array of size 20 are accessed asi [0] throughi [19] .

t est - expr essi on isevauated at the beginning of each iteration through the loop, and if
itistrue (non-zero), f or - code- bl ock isexecuted. At the end of theloop, i ncr enent -
st at ement is executed. From anywhere within aloop, the statement cont i nue will jump to the
end of theloop (causing i ncr enent - st at enent to execute and then beginning another check

(c) 2004 Adam Barr. All Rights Reserved.

of t est - expr essi on and possible iteration of the loop); the statement br eak will leave the
loop immediately, without executing i ncr enent - st at enent .

Thereisaso awhi | e loop:

whil e (test-expression)
whi | e- code- bl ock

which evaluatest ext - expr essi on each time, and executes whi | e- code- bl ock if itis
true. cont i nue; and br eak; can aso be used withinwhi | e loops.

Functions are defined as:

return-type function-nane(typel argunentl, type2 argunent?2)

{

| ocal -vari abl e-decl arati ons;
functi on- code;

If ar gunent 1 isan array, it isfollowed with [], as in the example

int find_largest (int array[], int array_length)

| ocal -vari abl e-decl ar ati ons consists of variables declarations that are local to that
function.

Ther et ur n statement exits a function. r et ur n should be followed by a variable of the
proper r et ur n-t ype for the function. A specia r et ur n-t ype of voi d in the function
declaration means the function does not return avalue and ther et ur n statement needs no
arguments. Functions that return type voi d can end without ar et ur n statement.

C codeis run through a pre-processor before it is compiled. The main way in which
programmers are aware of the pre-processor isthat it can substitute constant definitions
throughout the code; so for example the pre-processor statement

#define ARRAY_SIZE 20

will cause the pre-processor to substitute 20 every place it sees ARRAY_SI ZE. #def i ne can
be used to define functions with arguments that are replaced, such as

#define NEGATIVE(x) (-(X))

but we won't use that in the examples.

(c) 2004 Adam Barr. All Rights Reserved.

Comments are denoted by / / ; everything after that on a line is ignored (one of the rare cases
in C where a line break has a different meaning from other white space, since only a line break
will enda// comment). Comments can also be delimited by a starting / * and an ending */ ;
within those comments a line break is like any other white space, and has no effect on the

comment.

